Active Set Algorithm for Structured Sparsity-Inducing Norms
نویسندگان
چکیده
We consider the empirical risk minimization problem for linear supervised learning, with regularization by structured sparsity-inducing norms. These are defined as sums of Euclidean norms on certain subsets of variables, extending the usual l1-norm and the group l1-norm by allowing the subsets to overlap. This leads to a specific set of allowed nonzero patterns for the solutions of such problems. We first explore the relationship between the groups defining the norm and the resulting nonzero patterns. In particular, we show how geometrical information about the variables can be encoded by our regularization. We finally present an active set algorithm to efficiently solve the corresponding minimization problem.
منابع مشابه
STRUCTURED VARIABLE SELECTION WITH SPARSITY-INDUCING NORMS Structured Variable Selection with Sparsity-Inducing Norms
We consider the empirical risk minimization problem for linear supervised learning, with regularization by structured sparsity-inducing norms. These are defined as sums of Euclidean norms on certain subsets of variables, extending the usual l1-norm and the group l1-norm by allowing the subsets to overlap. This leads to a specific set of allowed nonzero patterns for the solutions of such problem...
متن کاملStructured Variable Selection with Sparsity-Inducing Norms
We consider the empirical risk minimization problem for linear supervised learning, with regularization by structured sparsity-inducing norms. These are defined as sums of Euclidean norms on certain subsets of variables, extending the usual l1-norm and the group l1-norm by allowing the subsets to overlap. This leads to a specific set of allowed nonzero patterns for the solutions of such problem...
متن کاملA unified perspective on convex structured sparsity: Hierarchical, symmetric, submodular norms and beyond
In this paper, we propose a unified theory for convex structured sparsity-inducing norms on vectors associated with combinatorial penalty functions. Specifically, we consider the situation of a model simultaneously (a) penalized by a set-function defined on the support of the unknown parameter vector which represents prior knowledge on supports, and (b) regularized in `pnorm. We show that each ...
متن کاملProximal methods for the latent group lasso penalty
We consider a regularized least squares problem, with regularization by structured sparsity-inducing norms, which extend the usual `1 and the group lasso penalty, by allowing the subsets to overlap. Such regularizations lead to nonsmooth problems that are difficult to optimize, and we propose in this paper a suitable version of an accelerated proximal method to solve them. We prove convergence ...
متن کاملStructured sparsity-inducing norms through submodular functions
Sparse methods for supervised learning aim at finding good linear predictors from as few variables as possible, i.e., with small cardinality of their supports. This combinatorial selection problem is often turned into a convex optimization problem by replacing the cardinality function by its convex envelope (tightest convex lower bound), in this case the l1-norm. In this paper, we investigate m...
متن کامل